Invariant types in NIP theories

Roland Walker

University of Illinois at Chicago

Spring 2018

Roland Walker (UIC)

Invariant types in NIP theories

▲ ■ ▶ ■ つへへ Spring 2018 1/43

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Reference

Simon, Pierre (2015). Invariant types in NIP theories. *Journal of Mathematical Logic* 15 (2):1550006.

(日) (四) (日) (日) (日)

Invariant Types

Let $\mathcal L$ be a language, $\mathcal M$ an $\mathcal L\text{-structure, and }\mathcal U\succ \mathcal M$ a monster model.

Definition

A global type $p \in S_U(x)$ is *invariant over* M (or M-invariant) iff: for all $\sigma \in Aut(U/M)$, we have

$$\sigma(p)=p$$

(i.e., $\phi(x, b) \in p$ iff $\phi(x, \sigma(b)) \in p$).

Fact

If $p \in S_U(x)$ is finitely satisfiable in M, then p is invariant over M.

Fact

If $p \in S_U(x)$ is definable over M, then p is invariant over M.

< □ > < □ > < □ > < □ > < □ > < □ >

Invariant Types

Let $\mathcal L$ be a language, $\mathcal M$ an $\mathcal L\text{-structure, and }\mathcal U\succ \mathcal M$ a monster model.

Definition

A global type $p \in S_U(x)$ is *invariant over* M (or M-invariant) iff: for all $\sigma \in Aut(U/M)$, we have

$$\sigma(p)=p$$

(i.e., $\phi(x, b) \in p$ iff $\phi(x, \sigma(b)) \in p$).

Fact

If $p \in S_U(x)$ is finitely satisfiable in M, then p is invariant over M.

Fact

If $p \in S_U(x)$ is definable over M, then p is invariant over M.

Note: In a stable context, these three notions coincide.

(I) < (II) <

The (p, q)-Theorem

Let $p \ge q$ be positive integers.

Definition

A set system (X, S) has the (p, q)-property iff:

- $\varnothing \notin \mathcal{S}$ and
- out of every p sets in S, some q have nonempty intersection.

(p, q)-Theorem (Alon-Kleitman 1992)

There exists N = N(p, q) such that for all *finite* set systems (X, S) with the (p, q)-property and VC^{*}(S) < q, there is a subset of X with size at most N which intersects every set in S.

< □ > < 同 > < 回 > < 回 > < 回 >

Applying the (p, q)-Theorem

Let \mathcal{L} be a language, \mathcal{M} an \mathcal{L} -structure, and $\mathcal{U} \succ \mathcal{M}$ a monster model. Let $\phi(x, y), \psi(y) \in \mathcal{L}_M$ with ϕ NIP.

Proposition 2.5 + Uniform Bound N = N(p, q)Suppose $p \ge q > VC^*(\phi)$ and

$$\mathcal{S}_{\phi,\psi} := \{\phi(M,b) : b \in \psi(M)\}$$

has the (p, q)-property.

Then there are finitely many global types $p_0, \ldots, p_{N-1} \in S_U(x)$ where N = N(p,q) such that for each $b \in \psi(U)$, $\phi(x,b)$ is in one of them.

Proof: (p, q)-Theorem ...

- 4 回 ト 4 ヨ ト 4 ヨ ト

Proof: Let N = N(p,q) be given by the (p,q)-Theorem. Let

$$\Gamma(x_0,\ldots,x_{N-1}) = \left\{ \bigvee_{i < N} \phi(x_i,b) : b \in \psi(U) \right\}$$

Given a finite $\Gamma' \subseteq \Gamma$, we can apply the (p, q)-Theorem to

$$X = M$$
 and $S = \{\phi(M, b) : b \in \Gamma'\}$

to obtain $a'_0, \ldots, a'_{N-1} \models \Gamma'$.

By compactness, there are $a_0, \ldots, a_{N-1} \models \Gamma$.

Let $p_i = \operatorname{tp}_U(a_i)$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Proposition 2.5 + Uniform Bound N = N(p, q)

Suppose $p \ge q > \mathsf{VC}^*(\phi)$ and

$$\mathcal{S}_{\phi,\psi} := \{\phi(M,b) : b \in \psi(M)\}$$

has the (p, q)-property.

Then there are finitely many global types $p_0, \ldots, p_{N-1} \in S_U(x)$ where N = N(p,q) such that for each $b \in \psi(U)$, $\phi(x,b)$ is in one of them.

- We want a model-theoretic argument which does not rely on the (*p*, *q*)-theorem.
- Simon provides such an argument if we are willing to give up the uniform bound on *N*.

< (回) < (三) < (三) < (二) < (二) < (二) < (二) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-)

Proposition 2.5 (version 1)

Suppose $p \geq q > \mathsf{VC}^*(\phi)$ and

$$\mathcal{S}_{\phi,\psi} := \{\phi(M,b) : b \in \psi(M)\}$$

has the (p, q)-property.

Then there are finitely many global types $p_0, \ldots, p_{N-1} \in S_U(x)$ where N = N(p,q) such that for each $b \in \psi(U)$, $\phi(x, b)$ is in one of them.

Or equivalently ...

- 4 回 ト 4 ヨ ト 4 ヨ ト

Proposition 2.5 (version 2)

Suppose $p \ge q > VC^*(\phi)$ and

$$\mathcal{S}_{\phi,\psi} := \{\phi(\mathcal{M}, b) : b \in \psi(\mathcal{M})\}$$

has the (p, q)-property.

Suppose for all $b \in \psi(U)$, $\phi(x, b)$ does not divide over M.

Then there are finitely many global types $p_0, \ldots, p_{N-1} \in S_U(x)$ where N = N(p,q) such that for each $b \in \psi(U)$, $\phi(x, b)$ is in one of them.

Cleaning things up ...

イロト 不得 トイヨト イヨト 二日

Proposition 2.5 (version 2)

Suppose for all $b \in \psi(U)$, $\phi(x, b)$ does not divide over M.

Then there are finitely many global types such that for each $b \in \psi(U)$, $\phi(x, b)$ is in one of them.

★ ∃ ► ★

Proposition 2.5 (version 2)

Suppose for all $b \in \psi(U)$, $\phi(x, b)$ does not divide over M.

Then there are finitely many global types such that for each $b \in \psi(U)$, $\phi(x, b)$ is in one of them.

Or equivalently ...

Proposition 2.5 (version 3)

Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M.

Then for all global coheirs $q \in S_U(y)$ of $tp_M(b)$, there is $a \in U$ such that $\phi(a, y) \in q$.

イロト イヨト イヨト イヨト

Proposition 2.5 (version 2)

Suppose for all $b \in \psi(U)$, $\phi(x, b)$ does not divide over M.

Then there are finitely many global types such that for each $b \in \psi(U)$, $\phi(x, b)$ is in one of them.

Or equivalently ...

Proposition 2.5 (version 3)

Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M.

Then for all global coheirs $q \in S_U(y)$ of $tp_M(b)$, there is $a \in U$ such that $\phi(a, y) \in q$.

Note that a depends on q.

(日) (四) (日) (日) (日)

Conjecture 2.15 (Chernikov-Simon 2015)

Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M.

Then there is $\psi(y) \in tp_M(b)$ such that $\{\phi(x, b) : b \in \psi(M)\}$ is consistent.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Conjecture 2.15 (Chernikov-Simon 2015)

Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M.

Then there is $\psi(y) \in tp_M(b)$ such that $\{\phi(x, b) : b \in \psi(M)\}$ is consistent.

Or equivalently ...

Conjecture 2.15 (version 2)

Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M.

Then there is $a \in U$ such that for all global coheirs $q \in S_U(y)$ of $tp_M(b)$, $\phi(a, y) \in q$.

イロト イポト イヨト イヨト

Conjecture 2.15 (Chernikov-Simon 2015)

Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M.

Then there is $\psi(y) \in tp_M(b)$ such that $\{\phi(x, b) : b \in \psi(M)\}$ is consistent.

Or equivalently ...

Conjecture 2.15 (version 2)

Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M.

Then there is $a \in U$ such that for all global coheirs $q \in S_U(y)$ of $tp_M(b)$, $\phi(a, y) \in q$.

Note that a does not depend on q.

イロト イポト イヨト イヨト 二日

Let \mathcal{L} be a language, \mathcal{M} an NIP \mathcal{L} -structure, and $\mathcal{U} \succ \mathcal{M}$ a monster model.

Let $\phi(x, y) \in \mathcal{L}_M$.

Theorem 2.17

Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M and $tp_M(b)$ has only countably many global coheirs.

Then there is $a \in U$ such that for all global coheirs $q \in S_U(y)$ of $tp_M(b)$, $\phi(a, y) \in q$.

(日) (四) (日) (日) (日)

Spring 2018 10 / 43

< ∃ ►

Let \mathcal{L} be a language, \mathcal{M} an \mathcal{L} -structure, and $\mathcal{U} \succ \mathcal{M}$ a monster model.

Let $\phi(x, y)$, $\psi(y) \in \mathcal{L}_M$ with ϕ NIP.

Proposition 2.5 + Uniform Bound N = N(p, q)

Suppose $p \ge q > \mathsf{VC}^*(\phi)$ and $\mathcal{S}_{\phi,\psi} := \{\phi(M, b) : b \in \psi(M)\}$ has the (p, q)-property.

Then there are finitely many global types $p_0, \ldots, p_{N-1} \in S_U(x)$ where N = N(p,q) such that for each $b \in \psi(U)$, $\phi(x, b)$ is in one of them.

Further assume \mathcal{M} is NIP.

Theorem 2.17

Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M and $tp_M(b)$ has only countably many global coheirs.

Then there is $a \in U$ such that for all global coheirs $q \in S_U(y)$ of $tp_M(b)$, $\phi(a, y) \in q$.

Note that a does not depend on q.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

In an NIP context, restricted Morley sequences determine global types.

Let $\mathcal L$ be a language, $\mathcal M$ an $\mathcal L\text{-structure, and }\mathcal U\succ \mathcal M$ a monster model.

Let $p, q \in S_U(x)$ be invariant over M and $\phi(x, y) \in \mathcal{L}_M$ be NIP.

Fact 1.3

If $p^{(\omega)}|_{M} = q^{(\omega)}|_{M}$, then $p^{\phi} = q^{\phi}$.

In an NIP context, restricted Morley sequences determine global types.

Let $\mathcal L$ be a language, $\mathcal M$ an $\mathcal L\text{-structure, and }\mathcal U\succ \mathcal M$ a monster model.

Let $p, q \in S_U(x)$ be invariant over M and $\phi(x, y) \in \mathcal{L}_M$ be NIP.

Fact 1.3 If $p^{(\omega)}|_M = q^{(\omega)}|_M$, then $p^{\phi} = q^{\phi}$.

For all $i < \omega$, let $a_i \models p \mid_{Ma_{\leq i}}$.

Definition

We call $(a_i)_{i < \omega}$ a *Morley sequence* of *p* over *M*.

It follows $(a_i)_{i < \omega} \models p^{(\omega)} \downarrow_M$.

- 4 回 ト 4 三 ト 4 三 ト

Convergence

Let \mathcal{L} be a language, \mathcal{M} an \mathcal{L} -structure, and $\mathcal{U} \succ \mathcal{M}$ a monster model. Let $p \in S_U(x)$ be invariant over M and $\phi(x, y) \in \mathcal{L}_M$ be NIP. Suppose $I := (a_i)_{i < \omega} \models p^{(\omega)}|_M$ and each $p_i = \operatorname{tp}_U(a_i)$.

Lemma

If
$$p_i |_{MI} \rightarrow p |_{MI}$$
, then $p_i^{\phi} \rightarrow p^{\phi}$.

Proof: Since $S_U(x)$ is compact, there is an accumulation point $q \in S_U(x)$ of $(p_i)_{i < \omega}$. Since $p_i |_{MI} \rightarrow p |_{MI}$, we have $q |_{MI} = p |_{MI}$.

Thus
$$I\models q^{(\omega)}{}_M$$
, so $p^{(\omega)}{}_M=q^{(\omega)}{}_M$. By Fact 1.3, $p^{\phi}=q^{\phi}$.

Because q is arbitrary, all such accumulation points must agree with p^{ϕ} . So $p_i^{\phi} \to p^{\phi}$.

< □ > < 同 > < 回 > < 回 > < 回 >

Dividing

Let $\mathcal L$ be a language, $\mathcal M$ an $\mathcal L\text{-structure, and }\mathcal U\succ \mathcal M$ a monster model.

Let $A \subseteq U$, $b \in U$, and $\phi(x, y) \in \mathcal{L}$.

Definition

We say $\phi(x, b)$ divides over A iff: there exists an A-indiscernible sequence $(b_i : i < \omega)$ with $b_0 = b$ such that $\{\phi(x, b_i) : i < \omega\}$ is inconsistent.

Let $(b_i : i < \omega) \subseteq U$ be indiscernible with $|b_i| = |y|$.

Suppose VC^{*}(ϕ) = $d < \omega$.

Lemma 2.2 If $\{\phi(x, b_i) : i < \omega\}$ is (d + 1)-consistent, then it is consistent.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let \mathcal{L} and \mathcal{M} be countable. Let $\mathcal{N} \succ \mathcal{M}$ be \aleph_1 -saturated.

Suppose $\phi(x, y) \in \mathcal{L}_M$ is NIP, $b \in U$, and $\phi(x, b)$ does not divide over \mathcal{M} .

Theorem 2.10' If $q \in S_U(y)$ is a coheir of $tp_M(b)$, then there is $a \in N$ with $\phi(a, y) \in q$.

Proof: Let $I \subseteq N$ be such that

$$I := (b'_i)_{i < \omega} \models q^{(\omega)} \downarrow_M$$
.

Let $(\theta_i(y) : i < \omega)$ enumerate $q \downarrow_{MI}$. For $k < \omega$, let $\psi_k(y) = \bigwedge_{i < k} \theta_i(y)$.

Observe that we cannot have $(b_i)_{i < \omega} \subseteq U$ such that

(i) $\{\phi(x, b_i) \leftrightarrow \phi(x, b_{i+1}) : i < \omega\}$ is satisfiable and

(ii) for all $i < \omega$, we have $b_i \models \psi_i$

since our first lemma and (ii) imply that $tp^{\phi^*}(b_i) \rightarrow q^{\phi^*}$, while (i) precludes convergence.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let
$$\pi(x) = \bigwedge_{i \leq VC^*(\phi)+1} \phi(x, b'_i)$$
 and
 $\gamma_n(x, y_0, \dots, y_n) = \bigwedge_{i < n} [\phi(x, y_i) \nleftrightarrow \phi(x, y_{i+1})].$

By the previous observation and compactness, let $n < \omega$ and $b_0, \ldots, b_{n-1} \in M$ such that (1) $\mathcal{U} \models \exists x [\pi(x) \land \gamma_{n-1}(x, b_0, \ldots, b_{n-1})],$ (2) for all $i < n, b_i \models \psi_i$, and (3) for all $b_n \in \psi_n(M), \mathcal{U} \models \neg \exists x [\pi(x) \land \gamma_n(x, b_0, \ldots, b_n)].$

< □ > < □ > < □ > < □ > < □ > < □ >

Recall:

•
$$\pi(x) = \bigwedge_{i \leq \mathsf{VC}^*(\phi)+1} \phi(x, b'_i)$$

• $\gamma_n(x, y_0, \dots, y_n) = \bigwedge_{i < n} [\phi(x, y_i) \nleftrightarrow \phi(x, y_{i+1})]$
• (1) $\mathcal{U} \models \exists x [\pi(x) \land \gamma_{n-1}(x, b_0, \dots, b_{n-1})]$

Let $b'_{\omega} \in N$ be such that $b'_{\omega} \models q \downarrow_{MI}$.

Claim

There exists $a_* \in N$ satisfying $\pi(x) \wedge \gamma_{n-1}(x, b_0, \dots, b_{n-1}) \wedge \phi(x, b'_{\omega})$.

Proof of Claim: Let
$$\phi'(x,y) = \phi(x,y) \wedge \gamma_{n-1}(x,b_0,\ldots,b_{n-1}).$$

Now (1) implies that $\bigwedge_{i \leq VC^*(\phi)+1} \phi'(x, b'_i)$ is satisfiable.

Since $VC^*(\phi') \leq VC^*(\phi) + 1$, Lemma 2.2 ensures there is an $a_* \in N$ satisfying

$$\{\phi'(\mathbf{x}, \mathbf{b}'_i): i \leq \omega\}.$$

Let $\gamma(x) = \bigwedge_{i < n} \phi(x, b_i)^{\epsilon_i}$ with each $\epsilon_i < 2$ such that $\mathcal{U} \models \gamma(a_*)$. By (3), there is $\epsilon_n < 2$ such that for all $b_n \in \psi_n(M)$,

$$\mathcal{U} \models \pi(x) \land \gamma(x) \to \phi(x, b_n)^{\epsilon_n}.$$

Since q is finitely satisfiable in $\psi_n(M)$,

$$\pi(x) \wedge \gamma(x) \rightarrow \phi(x, y)^{\epsilon_n} \in q(y).$$

Further, since

$$\mathcal{U} \models \pi(a_*) \land \gamma(a_*) \land \phi(a_*, b'_\omega)$$

and $b'_{\omega} \models q \mid_{MI}$, we must have $\epsilon_n = 1$.

Thus, for all $b_n \in \psi_n(M)$, $\mathcal{U} \models \phi(a_*, b_n)$.

Finally, since q is finitely satisfiable in $\psi_n(M)$, we conclude that $\phi(a_*, y) \in q$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

So far we have proved Proposition 2.5 in a countable context . . .

Let \mathcal{L} and \mathcal{M} be countable. Let $\mathcal{U} \succ \mathcal{M}$ be a monster model.

Let $\phi(x, y) \in \mathcal{L}_M$ be NIP.

Proposition 2.5' (version 3)

Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M.

Then for all global coheirs $q \in S_U(y)$ of $tp_M(b)$, there is $a \in U$ such that $\phi(a, y) \in q$.

So far we have proved Proposition 2.5 in a countable context ...

Let \mathcal{L} and \mathcal{M} be countable. Let $\mathcal{U} \succ \mathcal{M}$ be a monster model.

Let $\phi(x, y) \in \mathcal{L}_M$ be NIP.

Proposition 2.5' (version 3)

Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M.

Then for all global coheirs $q \in S_U(y)$ of $tp_M(b)$, there is $a \in U$ such that $\phi(a, y) \in q$.

Or equivalently, if $\psi(y) \in \mathcal{L}_M \ldots$

Proposition 2.5' (version 2)

Suppose for all $b \in \psi(U)$, $\phi(x, b)$ does not divide over M.

Then there are finitely many global types such that for each $b \in \psi(U)$, $\phi(x, b)$ is in one of them.

Lemma

Suppose for all $b \in \psi(U)$, $\phi(x, b)$ does not divide over M.

Then there exist $\mathcal{L}' \subseteq \mathcal{L}$ and $\mathcal{M}_0 \prec \mathcal{M}$, both countable, such that

- $\phi, \psi \in \mathcal{L}'_{M_0}$ and
- for all $b \in \psi(U)$, $\phi(x, b)$ does not divide over \mathcal{M}'_0 (\mathcal{L}' -reduct of \mathcal{M}_0).

Proof:

Let
$$\Sigma(y_i : i < \omega) = \operatorname{Th}_M(\mathcal{M}) + (y_i)_{i < \omega}$$
 indisc. over $M + \psi(y_0)$.
Let $d = \operatorname{VC}^*(\phi)$ and $\theta(y_0, \dots, y_d) = \exists x \bigwedge_{i \leq d} \phi(x, y_i)$.
Since $\Sigma \vdash \theta$, there is a finite $\Gamma(y_0, \dots, y_{n-1}) \subseteq \Sigma$ such that $\Gamma \vdash \theta$.
Choose a finite sublanguage $\mathcal{L}' \subseteq \mathcal{L}$ and a countable model $\mathcal{M}_0 \prec \mathcal{M}$ such that $\Gamma \subseteq \mathcal{L}'_{\mathcal{M}_0}$ and $\theta, \psi \in \mathcal{L}'_{\mathcal{M}_0}$.

Lemma

Suppose for all $b \in \psi(U)$, $\phi(x, b)$ does not divide over M.

Then there exist $\mathcal{L}' \subseteq \mathcal{L}$ and $\mathcal{M}_0 \prec \mathcal{M}$, both countable, such that

- $\phi, \psi \in \mathcal{L}'_{M_0}$ and
- for all $b \in \psi(U)$, $\phi(x, b)$ does not divide over \mathcal{M}'_0 (\mathcal{L}' -reduct of \mathcal{M}_0).

Proof (cont.): Suppose $(b_i)_{i < \omega} \subseteq U = U'$ is indiscernible over \mathcal{M}'_0 with $b_0 \in \psi(U)$. By the Coincidence Lemma and the indiscernibility of $(b_i)_{i < \omega}$,

$$\mathcal{U}' \models \Gamma(b_0, \ldots, b_{n-1}), \quad \text{so} \quad \mathcal{U}' \models \theta(b_0, \ldots, b_d).$$

Further $VC^*_{\mathcal{U}}(\phi) = VC^*_{\mathcal{U}'}(\phi)$. So by Lemma 2.2, $\{\phi(x, b_i) : i < \omega\}$ is satisfiable in \mathcal{U}' . Thus $\phi(x, b)$ does not divide over \mathcal{M}'_0 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition 2.5 (version 2)

Suppose for all $b \in \psi(U)$, $\phi(x, b)$ does not divide over M.

Then there are finitely many global types such that for each $b \in \psi(U)$, $\phi(x, b)$ is in one of them.

Proof: By the Lemma, there exist $\mathcal{L}' \subseteq \mathcal{L}$ and $\mathcal{M}_0 \prec \mathcal{M}$, both countable, such that for all $b \in \psi(U)$, $\phi(x, b)$ does not divide over \mathcal{M}'_0 .

By Proposition 2.5' there exist $p'_0, \ldots, p'_{n-1} \in S_{U'}(x)$ such that for each $b \in \psi(U)$, $\phi(x, b)$ is in one of them.

For each *i*, let $p_i \in S_U(x)$ extend p'_i .

・ 何 ト ・ ヨ ト ・ ヨ ト

Proposition 2.5 (version 2)

Suppose for all $b \in \psi(U)$, $\phi(x, b)$ does not divide over M.

Then there are finitely many global types such that for each $b \in \psi(U)$, $\phi(x, b)$ is in one of them.

Proof: By the Lemma, there exist $\mathcal{L}' \subseteq \mathcal{L}$ and $\mathcal{M}_0 \prec \mathcal{M}$, both countable, such that for all $b \in \psi(U)$, $\phi(x, b)$ does not divide over \mathcal{M}'_0 .

By Proposition 2.5' there exist $p'_0, \ldots, p'_{n-1} \in S_{U'}(x)$ such that for each $b \in \psi(U)$, $\phi(x, b)$ is in one of them.

For each *i*, let $p_i \in S_U(x)$ extend p'_i .

This result has interesting topological consequences for type space ...

< ロ > < 同 > < 回 > < 回 > < 回 > <

Define the function

$$d_p^{\phi}:S_M(y) \to 2$$

such that for all $t \in S_M(y)$,

 $p \vdash \phi(x, t)^{d_p^{\phi}(t)}.$

Define the function

$$d_p:S_M(y)\to 2$$

such that for all $t \in S_M(y)$,

 $p \vdash \phi(x,t)^{d_p(t)}.$

Define the function

$$d_p:S_M(y)\to 2$$

such that for all $t \in S_M(y)$,

$$p \vdash \phi(x,t)^{d_p(t)}.$$

• This function determines *p* by considering all formulae with parameters from *M*.

Define the function

$$d_p:S_M(y)\to 2$$

such that for all $t \in S_M(y)$,

$$p \vdash \phi(x,t)^{d_p(t)}.$$

- This function determines *p* by considering all formulae with parameters from *M*.
- We would like to only consider ϕ^* , but in order to do so we need to look at parameters from N.

Let $\mathcal{M} \prec^+ \mathcal{N}$. Fix $\phi(x, y) \in \mathcal{L}_M$ NIP. Let $p \in S_U^{\phi}(x)$ be invariant over \mathcal{M} . Let $b, d \in U, q_0 = \operatorname{tp}_N(b)$, and $q_1 = \operatorname{tp}_N(d)$.

Proposition 2.11

If both q_0 and q_1 are finitely satisfiable in M and $q_0^{\phi^*}=q_1^{\phi^*}$, then

$$p \vdash \phi(x, b)$$
 iff $p \vdash \phi(x, d)$.

Proof: Let $\tilde{q}_i = q_i |^U$.

By uniqueness and existence of coheirs, \tilde{q}_i is finitely satisfiable in M, so $\tilde{q}_0 \otimes \tilde{q}_1$ is finitely satisfiable in M.

Let $(b_i d_i : i < \omega) \subseteq U$ be indiscernible over M with

$$b_0 d_0 \models (\widetilde{q}_0 \otimes \widetilde{q}_1) \downarrow_M$$
.

Let $\mathcal{M} \prec^+ \mathcal{N}$. Fix $\phi(x, y) \in \mathcal{L}_M$ NIP. Let $p \in S_U^{\phi}(x)$ be invariant over M. Let $b, d \in U, q_0 = \operatorname{tp}_N(b)$, and $q_1 = \operatorname{tp}_N(d)$.

Proposition 2.11

If both q_0 and q_1 are finitely satisfiable in M and $q_0^{\phi^*}=q_1^{\phi^*}$, then

$$p \vdash \phi(x, b)$$
 iff $p \vdash \phi(x, d)$.

Proof (cont.): Assume $p \vdash \phi(x, b) \land \neg \phi(x, d)$. Since p is invariant over M,

$$\{\phi(x, b_i) \land \neg \phi(x, d_i) : i < \omega\} \subseteq p,$$

so $\phi(x, b_0) \land \neg \phi(x, d_0)$ does not divide over M.

But Theorem 2.10 implies the existence of $a \in N$ such that

$$ilde{q}_0\otimes ilde{q}_1dash \phi(a,y_0)\wedge
eg \phi(a,y_1),$$

a contradiction!

Definition

Let

$$f^{\phi}_p:S^{\phi^*}_N(y)$$
 fin. sat. $M o 2$

be given by $f_p^{\phi}(q) = \epsilon$ iff

 $\exists b \models q \text{ such that } \operatorname{tp}_N(b) \text{ fin. sat. } M \text{ and } p \vdash \phi(x, b)^{\epsilon}.$

A (1) > A (2) > A

Definition

Let

$$f_p:S^{\phi^*}_N(y)$$
 fin. sat. $M o 2$

be given by $f_p(q) = \epsilon$ iff

 $\exists b \models q \text{ such that } \operatorname{tp}_N(b) \text{ fin. sat. } M \text{ and } p \vdash \phi(x, b)^{\epsilon}.$

A (1) > A (2) > A

Definition

Let

$$f_p:S_N^{\phi^*}(y)$$
 fin. sat. $M o 2$

be given by $f_p(q) = \epsilon$ iff

 $\exists b \models q \text{ such that } \operatorname{tp}_N(b) \text{ fin. sat. } M \text{ and } p \vdash \phi(x, b)^{\epsilon}.$

• Proposition 2.11 implies that f_p is well-defined.

Definition

Let

$$f_p:S_N^{\phi^*}(y)$$
 fin. sat. $M o 2$

be given by $f_p(q) = \epsilon$ iff

 $\exists b \models q \text{ such that } \operatorname{tp}_N(b) \text{ fin. sat. } M \text{ and } p \vdash \phi(x, b)^{\epsilon}.$

- Proposition 2.11 implies that f_p is well-defined.
- Further, f_p determines p since for all $q \in S_N(y)$ fin. sat. M,

$$p \vdash \phi(x,q \downarrow_M)^{f_p(q^{\phi^*})}$$

Definition

Let

$$f_p:S_N^{\phi^*}(y)$$
 fin. sat. $M o 2$

be given by $f_{p}(q) = \epsilon$ iff

 $\exists b \models q \text{ such that } \operatorname{tp}_N(b) \text{ fin. sat. } M \text{ and } p \vdash \phi(x, b)^{\epsilon}.$

- Proposition 2.11 implies that f_p is well-defined.
- Further, f_p determines p since for all $q \in S_N(y)$ fin. sat. M,

$$p \vdash \phi(x, q \downarrow_M)^{f_p(q^{\phi^*})}.$$

• Note that f_p could be defined on $S_U^{\phi^*}(y)$ fin. sat. M.

We have $d_p: S_M(y) \to 2$ such that for all $t \in S_M(y)$,

$$p \vdash \phi(x, t)^{d_p(t)},$$

and $f_p: S_N^{\phi^*}(y)$ fin. sat. $M \to 2$ such that for all $q \in S_N(y)$ fin. sat. M,

$$p \vdash \phi(x,q \downarrow_M)^{f_p(q^{\phi^*})}.$$

We have $d_p: S_M(y) \to 2$ such that for all $t \in S_M(y)$,

$$p \vdash \phi(x, t)^{d_p(t)},$$

and $f_p: S_N^{\phi^*}(y)$ fin. sat. $M \to 2$ such that for all $q \in S_N(y)$ fin. sat. M,

$$p \vdash \phi(x, q \downarrow_M)^{f_p(q^{\phi^*})}.$$

Let $\mathcal{M} \prec^+ \mathcal{N} \prec^{\#} \mathcal{U}$. Fix $\phi(x, y) \in \mathcal{L}_M$ NIP.

Definition

Let

$$\Omega := 2^{S_U^{\phi^*}(y) \text{ fin. sat. } M}.$$

We view Ω in the product topology, so a subbasis for Ω is

$$\left\{\{g\in\Omega\,:\,g(q)=\epsilon\}\,:\,q\in S_U^{\phi^*}(y)\text{ fin. sat. }M,\;\epsilon<2\right\}.$$

Define the injection $f: S_U^{\phi}(x) \text{ inv. } M \to \Omega$ by $p \mapsto f_p$.

Definition

Let
$$\operatorname{Inv}_{\phi}(M) := \operatorname{Image} f = \{f_p : p \in S_U^{\phi}(x) \text{ inv. } M\} \subseteq \Omega.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Lemma 2.12 Inv $_{\phi}(M)$ is closed in Ω .

Proof: For all $g \in \Omega$, define

$$\Gamma_g = \left\{ \phi(x, b)^{g(q^{\phi^*})} : q \in S_N(y) \text{ fin. sat. } M, b \models q \right\}.$$

Claim

 $\text{If }g\in\Omega\text{ and }p\in S_U^\phi(x)\text{ inv. }M\text{, then }\qquad g=f_p\quad\Leftrightarrow\quad \Gamma_g\subseteq p.$

Proof of Claim: (\Rightarrow): f_p is well-defined. (\Leftarrow): Suppose $\Gamma_g \subseteq p$. Let $q \in S_N(y)$ fin. sat. M and $b \models q$. Then $g(q^{\phi^*}) = \epsilon$ implies $\phi(x, b)^{\epsilon} \in \Gamma_g \subseteq p$, so $f_p(q^{\phi^*}) = \epsilon$.

(日)

Proof of Lemma 2.12 (cont.):

Let
$$\mathcal{L}^* = \mathcal{L}_U \cup \{\epsilon_q : q \in S_M(y)\} \cup \{c\}.$$

Let $g \in \Omega \setminus Inv_{\phi}(M)$.

Let
$$\Sigma(x) = \operatorname{Th}_U(\mathcal{U}) + \{\phi(x, b) \leftrightarrow \epsilon_{\operatorname{tp}_M(b)} = c : b \in U\}.$$

By the claim, $\Sigma(x) + \Gamma_g(x)$ is inconsistent.

By compactness, there is some finite $\Gamma_g'\subseteq \Gamma_g$ such that $\Sigma+\Gamma_g'$ is inconsistent.

Then there is some finite $Q \subseteq S_U^{\phi^*}(y)$ fin. sat. *M* such that

$$g \in \{h \in \Omega : h|_Q = g|_Q\} \subseteq \Omega \setminus Inv_{\phi}(M).$$

Thus $\Omega \setminus Inv_{\phi}(M)$ is open.

For all $s \in S^{\phi}_{M}(x)$, define the function

$$\hat{f}_{s}:S_{U}^{\phi^{*}}(y)$$
 fin. sat. $M
ightarrow 2$

such that for all $q \in S_U(y)$ fin. sat. M,

$$q \vdash \phi(s, y)^{\hat{f}_s(q^{\phi^*})}$$

Define the injection $\hat{f}: S^{\phi}_{\mathcal{M}}(x) \to \Omega$ by $s \mapsto \hat{f}_s$.

Claim

 \hat{f} induces a topology on $S^{\phi}_{\mathcal{M}}(x)$ which is at least as fine as the standard.

Proof: Let $A = [\phi(x, b)^{\epsilon}]$ for some $b \in M$ and $\epsilon < 2$.

Recall that sets of this form are a subbasis for $S^{\phi}_{M}(x)$.

We will show that $A = \hat{f}^{-1}\left(\{g \in \Omega \, : \, g(q) = \epsilon\}\right)$ where $q = \operatorname{tp}_U^{\phi^*}(b)$.

Let $q = \operatorname{tp}_U^{\phi^*}(b)$, $s \in A$, and $a \models s$. We have $\mathcal{U} \models \phi(a, b)^{\epsilon} \Rightarrow q \vdash \phi(a, y)^{\epsilon} \Rightarrow \hat{f}_s(q) = \epsilon$. Similarly, for $t \notin A$, we have $\hat{f}_t(q) = 1 - \epsilon$.

Let $q = \operatorname{tp}_U^{\phi^*}(b)$, $s \in A$, and $a \models s$. We have $\mathcal{U} \models \phi(a, b)^{\epsilon} \Rightarrow q \vdash \phi(a, y)^{\epsilon} \Rightarrow \hat{f}_s(q) = \epsilon$. Similarly, for $t \notin A$, we have $\hat{f}_t(q) = 1 - \epsilon$.

Note: This demonstrates that \hat{f} is injective.

Roland Walker (UIC)

The induced topology is often strictly finer.

For example:

Let
$$\mathcal{M} = (\mathbb{Q}, <)$$
, $\phi(x, y)$ be $x < y$, $s(x) = \operatorname{tp}_{M}^{\phi}(\pi)$, and
 $q(y) = \left\{ (a < y)^{\exists b \in \mathbb{Q} [a < b < \pi]} : a \in U \right\} \in S_{U}^{\phi^{*}}(y).$

Notice that q is finitely satisfiable in M. Let $B = \{g \in \Omega : g(q) = 0\}$. By definition $q \vdash \phi(\pi, y)^{\hat{f}_s(q)}$, so $\hat{f}_s(q) = 0$. Thus $s \in \hat{f}^{-1}(B)$.

But any open neighborhood of s in $S^{\phi}_{M}(x)$ contains $\operatorname{tp}^{\phi}_{M}(c)$ for some $c \in \mathbb{Q}^{<\pi}$, and therefore the induced topology is strictly finer.

・同ト・ヨト・ヨト ヨークQへ

Let $\mathcal{M} \prec^{\#} \mathcal{U}$. Fix $\phi(x, y) \in \mathcal{L}_M$ NIP.

Proposition 2.13

Given $p \in S_U^{\phi}(x)$ invariant over M, f_p is in the closure of $S_M^{\phi}(x)$ when viewed in Ω , i.e.,

$$f_p \in \mathsf{cl}\left(\left\{\hat{f}_s : s \in S^{\phi}_M(x)\right\}\right).$$

Proof: For any finite $Q \subseteq S_U^{\phi^*}(y)$ fin. sat. M, we can find $s \in S_M^{\phi}(x)$ such that $f_p|_Q = \hat{f}_s|_Q \dots$

Roland Walker (UIC)

Invariant types in NIP theories

▶ ▲ ≣ ▶ ≣ ∽ Q (? Spring 2018 33 / 43

→ < Ξ →</p>

Given $q_0, \ldots, q_{n-1} \in S_U(y)$ fin. sat. M, let

$$q(y_0,\ldots,y_{n-1})=q_0(y_0)\otimes\cdots\otimes q_{n-1}(y_{n-1}),$$

and let $\bar{b} \models q \downarrow_M$.

Let

$$\psi(\mathbf{x},\mathbf{y}) := \bigwedge_{i < n} \phi(\mathbf{x},\mathbf{y}_i)^{f_p(q_i^{\phi^*})}.$$

By the definition of f_p , $\psi(x, \bar{b})$ is in p, which is invariant over M, so $\psi(x, \bar{b})$ does not divide over M.

Thus, by Theorem 2.10, there is $a \in U$ such that $\psi(a, \bar{y}) \in q$.

If we let $s = tp_M(a)$, then for each *i*,

$$f_p(q_i^{\phi^*}) = \hat{f}_s(q_i^{\phi^*}).$$

We can expand M so that the image of f is the closure of $S_M^{\phi}(x)$ when viewed in Ω .

Let $\mathcal{M} \prec^+ \mathcal{N}$. Fix $\phi(x, y) \in \mathcal{L}_M$ NIP.

Let $\mathcal{L}^* = \mathcal{L} \cup \{ P_a : a \in N \}.$

Let \mathcal{M}^* expand \mathcal{M} such that $P_a(M) = \phi(a, M)$ for all $a \in N$.

Let $\mathcal{U}^* \succ \mathcal{M}^*$ be a monster model. Let \mathcal{U} be the \mathcal{L} -reduct of \mathcal{U}^* . It follows that $\mathcal{U} \succ \mathcal{M}$ is a monster model.

Proposition 2.14

$$\operatorname{Inv}_{\phi}(M^*) = \operatorname{cl}\left(\widehat{f}\left(S^{\phi}_{M}(x)\right)\right) \subseteq \Omega.$$

• • = • • = •

By the Coincidence Lemma:

•
$$S_{U^*}^{\phi^*}$$
 fin. sat. $M=S_U^{\phi^*}$ fin. sat. M

•
$$\Omega^* = \Omega$$

•
$$S^{\phi}_{M^*}(x) = S^{\phi}_{M}(x)$$

• $\hat{f}^* = \hat{f}$

Since $\operatorname{Aut}(U^*/M) \subseteq \operatorname{Aut}(U/M)$:

•
$$S_{U^*}^{\phi}(x)$$
 inv. $M \supseteq S_U^{\phi}(x)$ inv. M
• $f^* \supset f$

•
$$\operatorname{Inv}_{\phi}(M^*) \supseteq \operatorname{Inv}_{\phi}(M)$$

- 4 ∃ ▶

∃ →

< (日) × < 三 × <

Given $s \in S^{\phi}_{M}$, there exists $P_{a}(y) \in \mathcal{L}^{*}$ such that for all $b \in M$, $s \vdash \phi(x, b)^{P_{a}(b)}$.

Let $p \in S^{\phi}_{U^*}(x)$ inv. M such that for all $b \in U$,

 $p \vdash \phi(x, b)^{P_a(b)}.$

Let $q \in S_{U^*}(y)$ fin. sat. M and $\epsilon = f_p^*(q^{\phi^*})$. Then $p \vdash \phi(x, q \downarrow_M)^{\epsilon}$, and so $q \vdash P_a(y)^{\epsilon}$. Assume $q \vdash \phi(s, y)^{1-\epsilon}$.

Since q fin. sat. M, there is $b \in M$ such that

$$\mathcal{U}^* \models P_a(b) \nleftrightarrow \phi(s, b)$$

which contradicts the definition of s.

Thus $q \vdash \phi(s, y)^{\epsilon}$, so $\hat{f}_s(q^{\phi^*}) = \epsilon$.

Proposition 2.6

The following are equivalent:

- (i) Suppose for all $b \in \psi(U)$, $\phi(x, b)$ does not divide over M. Then there are finitely many global types such that for each $b \in \psi(U)$, $\phi(x, b)$ is in one of them. (Proposition 2.5, version 2)
- (ii) Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M. Then for all global coheirs $q \in S_U(y)$ of $tp_M(b)$, there is $a \in U$ such that $\phi(a, y) \in q$. (Proposition 2.5, version 3)

Proof: (ii) \Rightarrow (i): Let ψ and ϕ be as in (i), and let

 $K := \{q \in S_U(y) : q \text{ finitely satisfiable in } \psi(M)\}.$

Let $q \in K$ and $b \models q \downarrow_M$. By compactness, $q + \psi$ is consistent, so $\phi(x, b)$ does not divide over M. By (ii), there is $a \in U$ such that $q \in [\phi(a, y)]$.

Since K is compact, there are $a_0, \ldots, a_{n-1} \in U$ such that the open sets $[\phi(a_i, y)]$ cover K.

Let $\bar{a}' \in U'$ be such that $tp_U(\bar{a}')$ is an heir of $tp_M(\bar{a})$. Let $b \in \psi(U)$.

Since $tp_{M\bar{a}'}(b)$ is a coheir of $tp_M(b)$, there exists $b'' \in U''$ such that $tp_{U'}(b'')$ extends $tp_{M\bar{a}'}(b)$ and is finitely satisfiable in M.

Then
$$\operatorname{tp}_U(b'') \in K$$
, so $\bigvee_{i < n} \phi(a_i, y) \in \operatorname{tp}_{U'}(b'')$.

M-invariance implies that

$$\bigvee_{i< n} \phi(a'_i, y) \in \operatorname{tp}_{U'}(b'') \supseteq \operatorname{tp}_{M\bar{a}'}(b),$$

and so $\mathcal{U}' \models \bigvee_{i < n} \phi(a'_i, b)$. Let $p_i = \operatorname{tp}_U(a'_i)$. Then $\phi(x, b) \in p_i$ for some *i*. (i) \Rightarrow (ii): See paper.

Lemma 2.16

The following are equivalent:

- (i) Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M. Then there is $\psi(y) \in tp_M(b)$ such that $\{\phi(x, b) : b \in \psi(M)\}$ is consistent. (Conjecture 2.15)
- (ii) Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M. Then there is $a \in U$ such that for all global coheirs $q \in S_U(y)$ of $\operatorname{tp}_M(b), \phi(a, y) \in q$. (Conjecture 2.15, version 2)

Proof: (i) \Rightarrow (ii): By (i), there is $\psi \in tp_M(b)$ and $a \in U$ such that for all $b \in \psi(M)$, we have $\mathcal{U} \models \phi(a, b)$.

(ii) \Rightarrow (i): Since (i) reduces to the case where ${\cal L}$ and ${\cal M}$ are countable, we may assume ${\cal L}$ and ${\cal M}$ are countable.

イロト イポト イヨト イヨト 二日

Lemma 2.16

The following are equivalent:

- (i) Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M. Then there is $\psi(y) \in tp_M(b)$ such that $\{\phi(x, b) : b \in \psi(M)\}$ is consistent. (Conjecture 2.15)
- (ii) Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M. Then there is $a \in U$ such that for all global coheirs $q \in S_U(y)$ of $\operatorname{tp}_M(b), \phi(a, y) \in q$. (Conjecture 2.15, version 2)

Proof: (cont.) Let $b \in U$.

Suppose $\phi(x, b)$ does not divide over M, and let $a \in U$ such that for all coheirs $q \in S_U(y)$ of $tp_M(b)$, $\phi(a, y) \in q$.

We claim there is $\psi \in tp_M(b)$ such that for all $d \in \psi(M)$, $\mathcal{U} \models \phi(a, d)$.

ヘロト ヘヨト ヘヨト ヘ

Claim

There is $\psi \in tp_M(b)$ such that for all $d \in \psi(M)$, $\mathcal{U} \models \phi(a, d)$.

Proof of Claim:

Assume not, so for all $\psi \in tp_M(b)$ there is $d \in \psi(M) \setminus \phi(a, M)$. Let $(\theta_i : i < \omega)$ enumerate $tp_M(b)$. For all $i < \omega$, let $\psi_i := \bigwedge_{i < i} \theta_j$ and $\phi(a, M)$ $d_i \in \psi_i(M) \setminus \phi(a, M).$ $\psi_i(M)$ Thus $tp_M(d_i) \rightarrow tp_M(b)$. d; Let \mathcal{D} be a nonprincipal ultrafilter on ω , and let $q = \lim_{\mathcal{D}} \operatorname{tp}_{U}(d_{i}) = \{ \gamma \in \mathcal{L}_{U} : \{ i : d_{i} \models \gamma \} \in \mathcal{D} \}.$ Then $\phi(a, y) \notin q$ a coheir of $tp_M(b)$.

М

Theorem 2.17

Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M and $tp_M(b)$ has only countably many global coheirs.

Then there is $a \in U$ such that for all global coheirs $q \in S_U(y)$ of $tp_M(b)$, $\phi(a, y) \in q$.

Theorem 2.17

Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M and $tp_M(b)$ has only countably many global coheirs.

Then there is $a \in U$ such that for all global coheirs $q \in S_U(y)$ of $tp_M(b)$, $\phi(a, y) \in q$.

The theorem also holds with a slightly weaker premise ...

Theorem 2.17

Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M and $\frac{tp_M(b)}{tp_M(b)}$ has only countably many global coheirs the space of global coheirs of $tp_M(b)$ is separable.

Then there is $a \in U$ such that for all global coheirs $q \in S_U(y)$ of $tp_M(b)$, $\phi(a, y) \in q$.

The theorem also holds with a slightly weaker premise

• • = • • = •

Theorem 2.17

Suppose $b \in U$ such that $\phi(x, b)$ does not divide over M and $\frac{tp_M(b)}{tp_M(b)}$ has only countably many global coheirs the space of global coheirs of $tp_M(b)$ is separable.

Then there is $a \in U$ such that for all global coheirs $q \in S_U(y)$ of $tp_M(b)$, $\phi(a, y) \in q$.

The theorem also holds with a slightly weaker premise

Question 2.18: If \mathcal{L} is a countable language and \mathcal{M} is a countable pseudofinite NIP \mathcal{L} -structure, does every $q \in S_M(y)$ have at most countably many coheirs?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >