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Invariant Types

Let £ be a language, M an L-structure, and U > M a monster model.
Definition
A global type p € Sy(x) is invariant over M (or M-invariant) iff: for all
o € Aut(U/M), we have

o(p)=p

(i.e., o(x, b) € piff ¢(x, (b)) € p).

Fact
If p € Sy(x) is finitely satisfiable in M, then p is invariant over M.

Fact
If p € Sy(x) is definable over M, then p is invariant over M.
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Invariant Types

Let £ be a language, M an L-structure, and U > M a monster model.
Definition
A global type p € Sy(x) is invariant over M (or M-invariant) iff: for all
o € Aut(U/M), we have

o(p)=p

(i.e., o(x, b) € piff ¢(x, (b)) € p).

Fact
If p € Sy(x) is finitely satisfiable in M, then p is invariant over M.

Fact
If p € Sy(x) is definable over M, then p is invariant over M.

Note: In a stable context, these three notions coincide.
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The (p, g)-Theorem

Let p > g be positive integers.
Definition
A set system (X, S) has the (p, q)-property iff:

e ¢S and
@ out of every p sets in S, some g have nonempty intersection.

(p, q)-Theorem (Alon-Kleitman 1992)

There exists N = N(p, q) such that for all finite set systems (X, S)
with the (p, g)-property and VC*(S) < g,

there is a subset of X with size at most N which intersects every
set in S. )
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Applying the (p, g)-Theorem

Let £ be a language, M an L-structure, and U > M a monster model.
Let ¢(x,y), ¥(y) € Lm with ¢ NIP.

Proposition 2.5 + Uniform Bound N = N(p, q)
Suppose p > g > VC*(¢) and

S = {d(M,b) : b e Pp(M)}
has the (p, q)-property.

Then there are finitely many global types po, ..., py_1 € Su(x) where
N = N(p, q) such that for each b € )(U), ¢(x, b) is in one of them.

Proof: (p, q)-Theorem ...
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Proof: Let N = N(p, q) be given by the (p, g)-Theorem.
Let

I_(X07 <oy XN— 1 {v¢xla b€¢(U)}

i<N
Given a finite [ C T, we can apply the (p, g)-Theorem to
X=M and S={¢p(M,b): bel'}

H / / !
to obtain ag,...,a)_; =T
By compactness, there are agp,...,an—1 ET.

Let p; = tpy(ai).
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Let £ be a language, M an L-structure, and U > M a monster model.

Let ¢(x,y), ¥(y) € Ly with ¢ NIP.
Proposition 2.5 + Uniform Bound N = N(p, q)
Suppose p > g > VC*(¢) and

Spw = {9(M,b) : b e p(M)}
has the (p, g)-property.

Then there are finitely many global types po, ..., py_1 € Sy(x) where
N = N(p, q) such that for each b € ¥(U), ¢(x, b) is in one of them.

@ We want a model-theoretic argument which does not rely on the
(p, q)-theorem.

@ Simon provides such an argument if we are willing to give up the
uniform bound on N.

Roland Walker (UIC) Invariant types in NIP theories Spring 2018 7/43



Let £ be a language, M an L-structure, and U > M a monster model.
Let ¢(x,y), ¥(y) € Ly with ¢ NIP.

Proposition 2.5 (version 1)
Suppose p > g > VC*(¢) and

Sp = {#(M,b) : b e p(M)}

has the (p, g)-property.

Then there are finitely many global types por———pr—rc-Spb-where
A=-AHpse} such that for each b € ¢(U), ¢(x, b) is in one of them.

Or equivalently . ..
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Let £ be a language, M an L-structure, and U > M a monster model.
Let ¢(x,y), ¥(y) € Ly with ¢ NIP.

Proposition 2.5 (version 2)

Suppose for all b € (U), ¢(x, b) does not divide over M.

Then there are finitely many global types por———pr—rc-Spba-where
A—=-AHpre} such that for each b € ¢(U), ¢(x, b) is in one of them.

Cleaning things up ...
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Let £ be a language, M an L-structure, and U > M a monster model.

Let ¢(x,y), ¥(y) € Ly with ¢ NIP.

Proposition 2.5 (version 2)
Suppose for all b € (U), ¢(x, b) does not divide over M.

Then there are finitely many global types such that for each b € ¥(U),
¢(x, b) is in one of them.
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Let £ be a language, M an L-structure, and U > M a monster model.
Let ¢(x,y), ¥(y) € Ly with ¢ NIP.

Proposition 2.5 (version 2)

Suppose for all b € (U), ¢(x, b) does not divide over M.

Then there are finitely many global types such that for each b € ¥(U),
¢(x, b) is in one of them.

Or equivalently ...
Proposition 2.5 (version 3)
Suppose b € U such that ¢(x, b) does not divide over M.

Then for all global coheirs g € Sy(y) of tpy(b), there is a € U such that
¢(a,y) € q.

Roland Walker (UIC) Invariant types in NIP theories Spring 2018 7/43



Let £ be a language, M an L-structure, and U > M a monster model.
Let ¢(x,y), ¥(y) € Ly with ¢ NIP.

Proposition 2.5 (version 2)

Suppose for all b € (U), ¢(x, b) does not divide over M.

Then there are finitely many global types such that for each b € ¥(U),
¢(x, b) is in one of them.

Or equivalently ...
Proposition 2.5 (version 3)
Suppose b € U such that ¢(x, b) does not divide over M.

Then for all global coheirs g € Sy(y) of tpy(b), there is a € U such that
¢(a,y) € q.

Note that a depends on g.
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Let £ be a language, M an L-structure, and U > M a monster model.
Let ¢(x,y) € Ly be NIP.

Conjecture 2.15 (Chernikov-Simon 2015)

Suppose b € U such that ¢(x, b) does not divide over M.

Then there is ¢)(y) € tpy(b) such that {¢(x,b) : b e (M)} is
consistent.
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Let £ be a language, M an L-structure, and U > M a monster model.
Let ¢(x,y) € Lm be NIP.

Conjecture 2.15 (Chernikov-Simon 2015)

Suppose b € U such that ¢(x, b) does not divide over M.

Then there is ¢)(y) € tpy(b) such that {¢(x,b) : b e (M)} is
consistent. )

Or equivalently . ..
Conjecture 2.15 (version 2)
Suppose b € U such that ¢(x, b) does not divide over M.

Then there is a € U such that for all global coheirs g € Sy(y) of tpy(b),
¢(a,y) € q.
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Let £ be a language, M an L-structure, and U > M a monster model.
Let ¢(x,y) € L be NIP.

Conjecture 2.15 (Chernikov-Simon 2015)

Suppose b € U such that ¢(x, b) does not divide over M.

Then there is ¢)(y) € tpy(b) such that {¢(x,b) : b e (M)} is
consistent. )

Or equivalently . ..

Conjecture 2.15 (version 2)

Suppose b € U such that ¢(x, b) does not divide over M.

Then there is @€ WU such that for all global coheirs g € Sy(y) of tpy(b),
¢(a,y) € q. )
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Let £ be a language, M an NIP L-structure, and U > M a monster
model.

Let ¢(x,y) € L.

Theorem 2.17

Suppose b € U such that ¢(x, b) does not divide over M and tpy,(b) has
only countably many global coheirs.

Then there is a € U such that for all global coheirs g € Sy(y) of tpy,(b),
¢(a,y) € q. )
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‘ (p, 9)-Theorem

Proposition 2.5 4+ Uniform Bound Theorem 2.17

Proposition 2.5 Conjecture 2.15
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‘ (p, 9)-Theorem

How do these compare?

Proposition 2.5 + Uniform Bound --------------=--- Theorem 2.17

Proposition 2.5 Conjecture 2.15
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Let £ be a language, M an L-structure, and U = M a monster model.

Let ¢(x,y), ¥(y) € Lm with ¢ NIP.

Proposition 2.5 + Uniform Bound N = N(p, q)
Suppose p > q > VC*(¢) and Sy, := {#(M, b) : b € (M)} has the
(P, q)-property.

Then there are finitely many global types [pg; 225 PNa1 € Su(X) where
IN="N(p;q) such that for each b € ¢(U), ¢(x, b) is in one of them.

Further assume M is NIP.

Theorem 2.17

Suppose b € U such that ¢(x, b) does not divide over M and tpy,(b) has
only countably many global coheirs.

Then there is @€ WU such that for all global coheirs g € Sy(y) of tpy(b),
¢(a,y) € q.
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In an NIP context, restricted Morley sequences determine
global types.

Fact 1.3

Let £ be a language, M an L-structure, and U > M a monster model.
Let p, g € Sy(x) be invariant over M and ¢(x, y) € Ly be NIP.

If p) = q)|p, then p¢ = g,
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In an NIP context, restricted Morley sequences determine
global types.

Let £ be a language, M an L-structure, and U = M a monster model.
Let p, g € Sy(x) be invariant over M and ¢(x, y) € Ly be NIP.

Fact 1.3
If p() | = q“) |, then p¢ = q°. J

Forall i <w, let a; = plma.;-
Definition J

We call (a;)i<w a Morley sequence of p over M.

It follows (a;)i<w = P | .
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Convergence

Let £ be a language, M an L-structure, and U > M a monster model.
Let p € Sy(x) be invariant over M and ¢(x,y) € Ly be NIP.
Suppose | := (a;)i<w = P“) | p and each p; = tpy(a;).

¢

Lemma
If pilvu— plmi, then p; — p?. J

Proof: Since Sy(x) is compact, there is an accumulation point g € Sy(x)
of (pi)i<w- Since pjlpi— plmi, we have qlyi= plmi-

Thus | = ¢ |y, so p@) | = g« y. By Fact 1.3, p? = ¢°.

Because g is arbitrary, all such accumulation points must agree with p?.
So pf’ — p?. |

Roland Walker (UIC) Invariant types in NIP theories Spring 2018 13 /43



Dividing

Let £ be a language, M an L-structure, and U = M a monster model.
Let AC U, be U, and ¢(x,y) € L.
Definition

We say ¢(x, b) divides over A iff: there exists an A-indiscernible sequence
(bi : i <w) with by = b such that {¢(x, b;) : i < w} is inconsistent.

Let (bi : i <w) C U be indiscernible with |b;| = |y|.
Suppose VC*(¢) = d < w.

Lemma 2.2
If {¢(x,bj) : i <w}is (d+ 1)-consistent, then it is consistent. J

Roland Walker (UIC) Invariant types in NIP theories Spring 2018 14 /43



Let £ and M be countable. Let A = M be Ni-saturated.
Suppose ¢(x,y) € Ly is NIP, b € U, and ¢(x, b) does not divide over M.

Theorem 2.10’
If g € Suy(y) is a coheir of tpy,(b), then there is a € N with ¢(a, y) € q. J

Proof: Let | C N be such that
= (b)icw = 0l
Let (0i(y) : i <w) enumerate q|py. For k < w, let Yr(y) = Ajci 0i(y).

Observe that we cannot have (b;)j<, C U such that
(i) {o(x, bj) «» ¢(x, bit1) : i < w} is satisfiable and
(i) for all i < w, we have b; |= 1);
since our first lemma and (ii) imply that tp?" (b;) — q¢, while (i)
precludes convergence.
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Let 7(x) = Aicvcr(g)+1 ¢(x, bj) and

a(% Y0 vm) = N[B0x 1) (x, yis1)].

i<n
By the previous observation and compactness, let n < w and
bo,...,bn_1 € M such that
(1) U | 3Ix[m(x) A yn-1(x, bo, . . ., bp—1)],
(2) for all i < n, bj = 1j, and
(3) for all by € (M), U = —3x[m(x) A vn(x, bo, - . ., bn)].
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Recall:
° 7(x) = Nicvcr(g)+1 9(x: b))
® Yn(X,¥0, -, ¥n) = Nicald(x, yi) «# d(x, yit1)]
o (1) U = Ix[m(x) Ayn—1(x, bo, ..., bn—1)]

Let b/, € N be such that b, = q|m.

Claim
There exists a, € N satisfying w(x) A yp—1(x, bo, - - ., bn—1) A ¢(x, b,). }

Proof of Claim: Let ¢'(x,y) = ¢(x,¥) A Yn—1(x, bo, - .., bp—1).
Now (1) implies that A;oycx(s)41 @'(x, b}) is satisfiable.

Since VC*(¢') < VC*(¢) + 1, Lemma 2.2 ensures there is an a, € N
satisfying
{¢'(x, b)) : i < w}.
U
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Let v(x) = Aj, @(x, b)) with each ¢ < 2 such that U = v(a.).
By (3), there is €, < 2 such that for all b, € 1,(M),

U = 7(x) Ay(x) = dx, bp)™.
Since q is finitely satisfiable in ¥,(M),

m(x) Av(x) = o(x, )" € a(y).

Further, since
U = m(as) Av(an) A dlas, br)
and b/, = qlm, we must have €, = 1.

Thus, for all by € ¥u(M), U = ¢(ay, by).

Finally, since g is finitely satisfiable in ¢,(M), we conclude that
¢(as,y) € q. u
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So far we have proved Proposition 2.5 in a countable

context ...
Let £ and M be countable. Let &/ = M be a monster model.

Let ¢(x,y) € Ly be NIP.
Proposition 2.5" (version 3)
Suppose b € U such that ¢(x, b) does not divide over M.

Then for all global coheirs g € Sy(y) of tpy,(b), there is a € U such that
¢(a,y) € q.
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So far we have proved Proposition 2.5 in a countable

context ...
Let £ and M be countable. Let &/ = M be a monster model.

Let ¢(x,y) € Lm be NIP.
Proposition 2.5" (version 3)
Suppose b € U such that ¢(x, b) does not divide over M.

Then for all global coheirs g € Sy(y) of tpy,(b), there is a € U such that
¢(a,y) € q.

Or equivalently, if ¥(y) € Ly ...

Proposition 2.5" (version 2)
Suppose for all b € ¥(U), ¢(x, b) does not divide over M.

Then there are finitely many global types such that for each b € ¥ (U),
&(x, b) is in one of them.
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Let £ be a language, M an L-structure, and U > M a monster model.
Let ¢(x,y),¥(y) € Ly with ¢ NIP.

Lemma

Suppose for all b € (U), ¢(x, b) does not divide over M.

Then there exist £ C £ and My < M, both countable, such that
° ¢, € L), and
e for all b € (U), ¢(x, b) does not divide over My (L'-reduct of Mp).

v

Proof:

Let X(y; : i < w) = Thy(M) + (¥i)i<w indisc. over M + 2(yp).
Let d = VC*(¢) and O(yo, - - -, ya) = Ix \;<y 9(x, ¥i)-

Since X |- 6, there is a finite ['(yo,...,¥n—1) C X such that [ - 0.

Choose a finite sublanguage £’ C £ and a countable model My < M such
that I C L}, and 0,7 € L), .
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Let £ be a language, M an L-structure, and U > M a monster model.
Let ¢(x,y),¥(y) € Ly with ¢ NIP.

Lemma

Suppose for all b € (U), ¢(x, b) does not divide over M.

Then there exist £ C £ and My < M, both countable, such that
° ¢, € L), and
e for all b € (U), ¢(x, b) does not divide over My (L'-reduct of Mp).

v

Proof (cont.): Suppose (bi)i<, € U = U’ is indiscernible over Mj with
bo € ¥ (U). By the Coincidence Lemma and the indiscernibility of (b;)i<y,

74 ): F(bo,...,b,,,l), SO u ):e(bo,...,bd).
Further VG, (¢) = VC(¢). So by Lemma 2.2, {¢(x,b;) : i < w} is
satisfiable in ¢’. Thus ¢(x, b) does not divide over Mj,. [ |
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Let £ be a language, M an L-structure, and U > M a monster model.
Let &(x,y),¥(y) € Ly with ¢ NIP.

Proposition 2.5 (version 2)
Suppose for all b € (U), ¢(x, b) does not divide over M.

Then there are finitely many global types such that for each b € ¥(U),
&(x, b) is in one of them.

Proof: By the Lemma, there exist £ C £ and My < M, both countable,
such that for all b € ¢)(U), ¢(x, b) does not divide over My,.

By Proposition 2.5" there exist py, . .., pl,_; € Su/(x) such that for each
b € ¥(U), ¢(x, b) is in one of them.

For each i, let p;i € Sy(x) extend p. [ |
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Let £ be a language, M an L-structure, and U > M a monster model.
Let &(x,y),¥(y) € Ly with ¢ NIP.

Proposition 2.5 (version 2)
Suppose for all b € (U), ¢(x, b) does not divide over M.

Then there are finitely many global types such that for each b € ¥(U),
&(x, b) is in one of them.

Proof: By the Lemma, there exist £ C £ and My < M, both countable,
such that for all b € ¢)(U), ¢(x, b) does not divide over My,.

By Proposition 2.5" there exist py, . .., pl,_; € Su/(x) such that for each
b € ¥(U), ¢(x, b) is in one of them.

For each i, let p;i € Sy(x) extend p. [ |

This result has interesting topological consequences for type space ...
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Let M < N. Fix ¢(x,y) € Ly NIP. Let p € Sﬁ(x) be invariant over M.

Define the function
d;f :Sm(y) — 2

such that for all t € Sp(y),

pE o(x, £)% ().
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Let M < N. Fix ¢(x,y) € Ly NIP. Let p € Sﬁ(x) be invariant over M.

Define the function
d, : Sm(y) — 2

such that for all t € Sp(y),

pF o(x, t)% ©),
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Let M < N. Fix ¢(x,y) € Ly NIP. Let p € Sﬁ(x) be invariant over M.

Define the function
d, : Sm(y) — 2

such that for all t € Sp(y),

pF o(x, t)% ©),

@ This function determines p by considering all formulae with
parameters from M.
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Let M < N. Fix ¢(x,y) € Ly NIP. Let p € Sg(x) be invariant over M.

Define the function
d, : Sm(y) — 2

such that for all t € Sp(y),
pF o(x, t)% ©),

@ This function determines p by considering all formulae with
parameters from M.

@ We would like to only consider ¢*, but in order to do so we need to
look at parameters from M.
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Let M <t N. Fix ¢(x,y) € Ly NIP. Let p € Sz(x) be invariant over M.
Let b, d € U, qo = tpy(b), and g1 = tpy(d).

Proposition 2.11

If both go and g; are finitely satisfiable in M and qg’* = qf*, then

pEo(x,b) iff  pk o(x,d).

Y.

Proof: Let §; = g;

By uniqueness and existence of coheirs, §; is finitely satisfiable in M, so
do ® G is finitely satisfiable in M.

Let (bjd; : i <w) C U be indiscernible over M with

bodo |= (Go ® G1)lm -
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Let M <t N. Fix ¢(x,y) € Ly NIP. Let p € Sz(x) be invariant over M.
Let b, d € U, qo = tpy(b), and g1 = tpy(d).

Proposition 2.11

If both go and g; are finitely satisfiable in M and qg* = qf*, then

pEo(x,b) iff  pk@(x,d).
Proof (cont.): Assume p F ¢(x, b) A —¢p(x, d). Since p is invariant over M,
{qb(X, bi)/\_'d)(xv dl) : I<w} C p,

so ¢(x, bp) A =¢(x, dp) does not divide over M.

But Theorem 2.10 implies the existence of a € N such that

do ® G1 - ¢(a, y0) A —~é(a, y1),

a contradiction! |
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Let M < N. Fix ¢(x,y) € Ly NIP. Let p € 53(X) be invariant over M.

Definition
Let )
fp¢ : S,‘C (y) fin.sat. M — 2

be given by fp¢(q) = ¢ iff

3b |= g such that tpy(b) fin. sat. M and p - ¢(x, b)“.
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Let M < N. Fix ¢(x,y) € Ly NIP. Let p € 53(X) be invariant over M.

Definition
Let )
fp S,‘C (y) fin.sat. M — 2

be given by f, (q) = € iff

3b |= g such that tpy(b) fin. sat. M and p - ¢(x, b)“.
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Let M < N. Fix ¢(x,y) € Ly NIP. Let p € 53(X) be invariant over M.

Definition
Let )
fp 5,‘(5, (y) fin.sat. M — 2

be given by f, (q) = € iff

3b |= g such that tpy(b) fin. sat. M and p - ¢(x, b)“.

@ Proposition 2.11 implies that £, is well-defined.
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Let M < N. Fix ¢(x,y) € Ly NIP. Let p € 53(X) be invariant over M.

Definition
Let )
fp 5,‘(5, (y) fin.sat. M — 2

be given by f, (q) = € iff

3b |= g such that tpy(b) fin. sat. M and p - ¢(x, b)“.

@ Proposition 2.11 implies that £, is well-defined.

o Further, f, determines p since for all g € Sy(y) fin. sat. M,

p o(x, qla) ).
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Let M < N. Fix ¢(x,y) € Ly NIP. Let p € 53(X) be invariant over M.

Definition
Let )
fp SI‘C (y) fin.sat. M — 2

be given by f, (q) = € iff

3b |= g such that tpy(b) fin. sat. M and p - ¢(x, b)“.

@ Proposition 2.11 implies that £, is well-defined.

o Further, f, determines p since for all g € Sy(y) fin. sat. M,

P d(x,qlm)? ).

o Note that f, could be defined on 53* (y) fin. sat. M.
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We have d,, : Sp(y) — 2 such that for all t € Sy(y),
P ¢(x, )0,

and f, : 5,‘{5,* (y) fin. sat. M — 2 such that for all g € Sy(y) fin. sat. M,

pE o(x, qlm)P@).

N Su(y) fin. sat. M ——> S8 (y) fin. sat. M
¢*
+ llM
M Sm(y) fo
dp
2
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We have d,, : Sp(y) — 2 such that for all t € Sy(y),
P ¢(x, )0,

and f, : 5,‘{5,* (y) fin. sat. M — 2 such that for all g € Sy(y) fin. sat. M,

pE o(x, qlm)P@).

u Su(y) fin. sat. M T» S8 (y) fin. sat. M
‘# LN i[N
N Sn(y) fin. sat. M 7 S8 (y) fin. sat. M
+ llM
M Swm(y) fp
dp
2
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Let M <t N <# U. Fix ¢(x,y) € Ly NIP.

Definition
Let .
Q= 2555 (y) fin. sat. M

We view €2 in the product topology, so a subbasis for € is
{{g €Q:glq)=¢} : g€ 53*(y) fin. sat. M, e < 2}.

Define the injection f: Sg(x) inv. M — Q by p— fp.
Definition
Let  Invg(M) :=Imagef ={f, : pe 5$(x) inv. M} C Q.
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Lemma 2.12
Invg (M) is closed in €. J

Proof: For all g € Q, define

g = {¢(X, b)g(q¢*) : g € Sn(y) fin.sat. M, b |= q}.

Claim
If geQand pe Sf}(x) inv. M, then g=1f & TgCp J

Proof of Claim: (=): f, is well-defined.

(«<): Suppose I'; C p.

Let g € Sn(y) fin. sat. M and b |= g.

Then g(g?") = € implies ¢(x, b) € T; C p, so f,(g? ) = €. O
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Proof of Lemma 2.12 (cont.):

Let £* =Ly U{eq : g€ Sm(y)}U{c}.

Let g € Q\ Invy(M).

Let X(x) = Thy(U) + {d(x, b) < €, ) = ¢ : b e U}.
By the claim, X(x) + I'g(x) is inconsistent.

By compactness, there is some finite I, C I'; such that ¥ + T is
inconsistent.

Then there is some finite Q C 53* (y) fin. sat. M such that
g c {h ISV hLQ: g[(\)} - Q\ |nv¢(/\/l).

Thus Q \ Inv4(M) is open. [
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For all s € 5,‘6,(x), define the function
o - 53*()/) fin.sat. M — 2
such that for all g € Sy(y) fin. sat. M,

gt ¢(s,y)s").

A

Define the injection  f : 5,‘6,()() —Q by s~ f.

Claim J

f induces a topology on S,‘@(x) which is at least as fine as the standard.

Proof: Let A= [¢(x, b)¢] for some b € M and € < 2.
Recall that sets of this form are a subbasis for Sfﬂ(x).

We will show that A= f"1({g € Q : g(q) = ¢}) where g = tp‘fj(b).
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Let g = tp‘f,*(b), s€A and afF=s.

We have U = ¢(a,b) = gt é(ay) = £(q) =c

Similarly, for t ¢ A, we have %(q) =1 —e.

% QO = 253*()/) fin. sat. M

A=[o(x,b)]  B={gecQ:g(q)=¢}

)
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Let g = tp‘f,*(b), s€A and afF=s.
We have U = ¢(a,b) = gt é(ay) = £(q) =c
Similarly, for t ¢ A, we have %(q) =1 —e. [

% QO = 253*()/) fin. sat. M

A=[o(x,b)]  B={gecQ:g(q)=¢}

)

Note: This demonstrates that f is injective.
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The induced topology is often strictly finer.
For example:
Let M =(Q,<), o&(x,y) bex<y, s(x)= tpf/,(w), and
aly) = {(a < y)#=2lt<rl - e Ul e 5 (y).
Notice that g is finitely satisfiable in M. Let B={g € Q : g(q) = 0}.

By definition g + ¢(r,y)*(@, so £(q) = 0. Thus s € f~1(B).

But any open neighborhood of s in Sl‘cl(x) contains tpfﬂ(c) for some
c € Q<™, and therefore the induced topology is strictly finer.
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Let M <# U. Fix ¢(x,y) € L NIP.

Proposition 2.13

Given p € Sfj(x) invariant over M, f, is in the closure of Sﬁ,(x) when

viewed in £, i.e.,
fp € cl ({fs i s€ SI‘@(X)D .

Proof: For any finite Q C 53* (y) fin. sat. M, we can find s € S;\Z(X) such
that f,lo= filg ...
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Q = 252*(y) fin. sat. M

QC 53* (x) fin. sat. M

fin
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Given qo, ..., qn-1 € Sy(y) fin. sat. M, let

a0, ¥n-1) = 9(»0) @ -+ ® gn—1(¥n-1),

and let b = qlu.

Let o
P(x,y) = [\ o(xyi) Pl ).

i<n
By the d_efinition of fp, Y(x, 5) is in p, which is invariant over M,
so 1(x, b) does not divide over M.

Thus, by Theorem 2.10, there is a € U such that ¥(a,y) € q.

If we let s = tpyy(a), then for each i,

fo(a?) = fi(al).
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We can expand M so that the image of f is the closure of
S¢(x) when viewed in Q.

Let M <t N. Fix ¢(x,y) € Ly NIP.
Let L*=LU{P, : a€ N}.
Let M* expand M such that P,(M) = ¢(a, M) for all a € N.

Let U* = M* be a monster model.
Let U/ be the L-reduct of U*.
It follows that & = M is a monster model.

Proposition 2.14
Invg(M*) = cl (f (Sﬁ,(x))) cQ.
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By the Coincidence Lemma:
° SZ* fin. sat. M = 53* fin. sat. M

e *=0Q
® Spy(x) = Spy(x) U reduct 0
o fr="F
#
Since Aut(U*/M) C Aut(U/M):
o S3.(x) inv. M 2 S(x) inv. M M —amgon > M
o f*Df

o Invy(M*) 2 Invg(M)
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Q = 253* (y) fin. sat. M

Sp.(x) inv. M

For each s, we want to
find p such that f; = f.

Si(x)
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Given s € Sf@,, there exists P,(y) € L£* such that for all b € M,
s+ ¢(x, b)P(5),

Let p € S{.(x) inv. M such that for all b e U,
p+ é(x, b)),

Let g € Sy+(y) fin. sat. M and € = f;(q¢*)_
Then pF ¢(x, qlm)¢, and so g = Pa(y)°.
Assume g F ¢(s, y) ¢

Since g fin. sat. M, there is b € M such that
U™ |= Pa(b) < ¢(s, b)

which contradicts the definition of s.

2 *
Thus g F ¢(s,y)<, so f(g?") = e. [ |
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Let £ be a language, M an L-structure, and U > M a monster model.
Let ¢(x,y), ¥(y) € Ly with ¢ NIP.

Proposition 2.6
The following are equivalent:
(i) Suppose for all b € ¥(U), ¢(x, b) does not divide over M.
Then there are finitely many global types such that for each
b € ¥(U), ¢(x,b) is in one of them. (Proposition 2.5, version 2)
(ii) Suppose b € U such that ¢(x, b) does not divide over M.
Then for all global coheirs g € Sy(y) of tpy,(b), there is a € U such
that ¢(a, y) € q. (Proposition 2.5, version 3)

Proof: (ii) = (i): Let ¢ and ¢ be as in (i), and let
K :={q € Sy(y) : q finitely satisfiable in )(M)}.

Let g € K and b |= q|m. By compactness, g + v is consistent, so ¢(x, b)
does not divide over M. By (ii), there is a € U such that g € [¢(a, y)].
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Since K is compact, there are ag,...,a,_1 € U such that the open sets
[¢(ai, y)] cover K.

Let 3’ € U’ be such that tp(3’) is an heir of tpy,(3). Let b € (V).

Since tpys/(b) is a coheir of tpy,(b), there exists b” € U” such that
tpys (b”) extends tpy s (b) and is finitely satisfiable in M.

Then tpy(b”) € K, so \/;_, #(ai,y) € tpy:(b").

Me-invariance implies that

\/ #(a,y) € tpy (b”) 2 tppz(b),
i<n
and soU' =/, o(a;, b).
Let p; = tpy(a’). Then ¢(x, b) € p; for some i.
(i) = (ii): See paper. [
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Let £ be a language, M an L-structure, and U > M a monster model.
Let ¢(x,y) € Lm be NIP.

Lemma 2.16

The following are equivalent:

(i) Suppose b € U such that ¢(x, b) does not divide over M.
Then there is 1(y) € tpp(b) such that {¢(x,b) : b e (M)} is
consistent. (Conjecture 2.15)

(i) Suppose b € U such that ¢(x, b) does not divide over M.
Then there is a € U such that for all global coheirs g € Sy(y) of
tpm(b), #(a,y) € q. (Conjecture 2.15, version 2)

v

Proof: (i) = (ii): By (i), there is ¢ € tpy,(b) and a € U such that for all
b € (M), we have U = ¢(a, b).

(it) = (i): Since (i) reduces to the case where £ and M are countable, we
may assume £ and M are countable.
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Let £ be a language, M an L-structure, and U > M a monster model.
Let ¢(x,y) € Lm be NIP.

Lemma 2.16

The following are equivalent:

(i) Suppose b € U such that ¢(x, b) does not divide over M.
Then there is 1(y) € tpp(b) such that {¢(x,b) : b e (M)} is
consistent. (Conjecture 2.15)

(i) Suppose b € U such that ¢(x, b) does not divide over M.
Then there is a € U such that for all global coheirs g € Sy(y) of
tpm(b), #(a,y) € q. (Conjecture 2.15, version 2)

Proof: (cont.) Let b e U.

Suppose ¢(x, b) does not divide over M, and let a € U such that for all
coheirs g € Sy(y) of tpy(b), ¢(a,y) € q.

We claim there is ¢ € tpy,(b) such that for all d € (M), U = ¢(a,d). B
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Claim
There is ¢ € tpy,(b) such that for all d € (M), U | ¢(a, d). J

Proof of Claim:
Assume not, so for all ¢ € tpy,(b) there is d € (M) \ ¢(a, M).
Let (0; : i < w) enumerate tpy,(b).
Forall i <w, let 9 :== A\;_; 0; and
di € $i(M)\ ¢(a, M).

Thus tpy(di) — tpu(b).

Let D be a nonprincipal ultrafilter on w, and let
g =limtpy(d) = (v € Lu : {i : di 7} €D},

Then ¢(a,y) ¢ q a coheir of tpy,(b). O
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Let £ be a language and M an NIP L-structure, both countable.
Let ¢(x,y) € Lm.

Theorem 2.17
Suppose b € U such that ¢(x, b) does not divide over M and tpy,(b) has
only countably many global coheirs.

Then there is a € U such that for all global coheirs g € Sy(y) of tpy,(b),
¢(a,y) € q. )
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Let £ be a language and M an NIP L-structure, both countable.
Let ¢(x,y) € Lm.

Theorem 2.17

Suppose b € U such that ¢(x, b) does not divide over M and tpy,(b) has
only countably many global coheirs.

Then there is a € U such that for all global coheirs g € Sy(y) of tpy,(b),
¢(a,y) € q. )

The theorem also holds with a slightly weaker premise ...
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Let £ be a language and M an NIP L-structure, both countable.
Let ¢(x,y) € Lm.

Theorem 2.17
Suppose b € U such that ¢(x, b) does not divide over M and #pprtb)has
only—countably—many-alobalcoheirs the space of global coheirs of tpy,(b)

is separable.
Then there is a € U such that for all global coheirs g € Sy(y) of tpy,(b),
¢(a,y) € q. )

The theorem also holds with a slightly weaker premise ...
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Let £ be a language and M an NIP L-structure, both countable.
Let ¢(x,y) € Lm.

Theorem 2.17
Suppose b € U such that ¢(x, b) does not divide over M and #pprtb)has
only—countably—many-alobalcoheirs the space of global coheirs of tpy,(b)

is separable.

Then there is a € U such that for all global coheirs g € Sy(y) of tpy,(b),
¢(a,y) € q.

The theorem also holds with a slightly weaker premise . ..

Question 2.18: If £ is a countable language and M is a countable
pseudofinite NIP L-structure, does every g € Spy(y) have at most
countably many coheirs?
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